Quantitative Relationship Between Expiratory Airflow Limitation and Dynamic Hyperinflation: A Thermo-statistical Model
Issue:
Volume 6, Issue 4, August 2020
Pages:
46-52
Received:
2 October 2020
Accepted:
26 October 2020
Published:
11 November 2020
Abstract: Clinical assessment of expiratory flow limitation (EFL) is important for diagnosing chronic pulmonary disease (COPD). Either EFL or dynamic hyperinflation (DH) in COPD has been understood based on wave speed theory, which is widely accepted as the standard concept. However, a theoretical perspective on the relationship between EFL and DH may require another approach. This article proposed another explanation for EFL with the introduction of pulmonary entropy with thermo-statistical considerations on choke state of the pulmonary system. According to Gibbs' thermodynamic equilibrium theory, the choke state of the pulmonary system was characterized by a critical pressure (Pc) emergence in the pulmonary parenchyma, which was proportional to the elastic recoil pressure (Pel) and the slope of maximal flow-volume curve (σ). Thermodynamic balance between energies (supplied from the body as heat, stored as the entropy of lungs, and dissipated in the respiratory system) explained the work of breathing (WOB), by which it was explained that an intrinsic PEEP (PEEPi) was emerging as a difference between sufficient and insufficient WOB for energy demands of the body. It was concluded that EFL would limit the WOB into less than demanded during exercise, and that the difference between demand and performance would induce a product of PEEPi and DH in volume.
Abstract: Clinical assessment of expiratory flow limitation (EFL) is important for diagnosing chronic pulmonary disease (COPD). Either EFL or dynamic hyperinflation (DH) in COPD has been understood based on wave speed theory, which is widely accepted as the standard concept. However, a theoretical perspective on the relationship between EFL and DH may requir...
Show More